Reinforcement Learning of Question-Answering Dialogue Policies for Virtual Museum Guides
نویسندگان
چکیده
We use Reinforcement Learning (RL) to learn question-answering dialogue policies for a real-world application. We analyze a corpus of interactions of museum visitors with two virtual characters that serve as guides at the Museum of Science in Boston, in order to build a realistic model of user behavior when interacting with these characters. A simulated user is built based on this model and used for learning the dialogue policy of the virtual characters using RL. Our learned policy outperforms two baselines (including the original dialogue policy that was used for collecting the corpus) in a simulation setting.
منابع مشابه
Does this list contain what you were searching for? Learning adaptive dialogue strategies for interactive question answering
Policy learning is an active topic in dialogue systems research, but it has not been explored in relation to Interactive Question Answering (IQA). We take a first step in learning adaptive interaction policies for QA: we address the question of how to acquire enough reliable query constraints, how many database results to present to the user and when to present them, given the competing trade-o...
متن کاملThe Twins Corpus of Museum Visitor Questions
The Twins corpus is a collection of utterances spoken in interactions with two virtual characters who serve as guides at the Museum of Science in Boston. The corpus contains about 200,000 spoken utterances from museum visitors (primarily children) as well as from trained handlers who work at the museum. In addition to speech recordings, the corpus contains the outputs of speech recognition perf...
متن کاملDialogue Learning With Human-In-The-Loop
An important aspect of developing conversational agents is to give a bot the ability to improve through communicating with humans and to learn from the mistakes that it makes. Most research has focused on learning from fixed training sets of labeled data rather than interacting with a dialogue partner in an online fashion. In this paper we explore this direction in a reinforcement learning sett...
متن کاملLearning Culture-Specific Dialogue Models from Non Culture-Specific Data
We build culture-specific dialogue policies of virtual humans for negotiation and in particular for argumentation and persuasion. In order to do that we use a corpus of non-culture specific dialogues and we build simulated users (SUs), i.e. models that simulate the behavior of real users. Then using these SUs and Reinforcement Learning (RL) we learn negotiation dialogue policies. Furthermore, w...
متن کاملDeep Reinforcement Learning for Dialogue Generation
Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012